Disclaimer

The following presentation, including any printed or electronic copy of these slides, the talks given by the presenters, the information communicated during any delivery of the presentation and any question and answer session and any document or material distributed at or in connection with the presentation (collectively, the “Presentation”) has been prepared by Cabaletta Bio, Inc. (“we,” “us,” “our,” “Cabaletta” or the “Company”) and is made for informational purposes only and does not constitute an offer to sell or a solicitation of an offer to buy securities, nor shall there be any sale of any securities in any state or jurisdiction in which such offer, solicitation or sale would be unlawful prior to registration or qualification under the securities laws of any such state or jurisdiction. This Presentation does not purport to be a prospectus, to be complete or to contain all of the information you may desire. Statements contained herein are made as of the date of this Presentation unless stated otherwise, and neither this Presentation, nor any sale of securities, shall under any circumstances create an implication that the information contained herein is correct as of any time after such date or that information will be updated or revised to reflect information that subsequently becomes available or changes occurring after the date hereof. This Presentation may contain “forward-looking statements” relating to our business, operations, and financial conditions, including, but not limited to, current beliefs, expectations and assumptions regarding the future of our business, future plans and strategies, our development plans, our preclinical and clinical results and other future conditions. Words such as, but not limited to, “look forward to,” “believe,” “expect,” “anticipate,” “estimate,” “intend,” “plan,” “would,” “should” and “could,” and similar expressions or words, identify forward-looking statements. Factors which could cause actual results to differ materially from those in the forward-looking statements include, among others, the success, cost, and timing of our product candidate development activities and preclinical studies and clinical trials, our ability to obtain and maintain regulatory approval for our product candidates, our ability to commercialize our product candidates, future agreements with third parties in connection with the development or commercialization of our product candidates, the size and growth potential of the market for our product candidates, our ability to contract with third-party suppliers and manufacturers and our ability to develop internal manufacturing capabilities and facilities, the accuracy of our estimates regarding expenses, future revenue, capital requirements, and needs for additional financing, and our ability to obtain and maintain intellectual property protection for our product candidates. Various risks, uncertainties and assumptions could cause actual results to differ materially from those anticipated or implied in our forward-looking statements. Such risks and uncertainties include, but are not limited to, uncertainties caused by adverse economic conditions, including, without limitation, as a result of extraordinary events or circumstances such as the COVID-19 pandemic, and any business interruptions to our operations or to those of our clinical sites, manufacturers, suppliers, or other vendors resulting from the COVID-19 pandemic or similar public health crisis. New risks and uncertainties may emerge from time to time, and it is not possible to predict all risks and uncertainties. Except as required by applicable law, we do not plan to publicly update or revise any forward-looking statements contained herein, whether as a result of any new information, future events, changed circumstances or otherwise. Although we believe the expectations reflected in such forward-looking statements are reasonable, we can give no assurance that such expectations will prove to be correct. Accordingly, you are cautioned not to place undue reliance on these forward-looking statements. No representations or warranties (expressed or implied) are made about the accuracy of any such forward-looking statements. Certain information contained in this Presentation relates to or is based on studies, publications, surveys and other data obtained from third-party sources and the Company's own internal estimates and research. While the Company believes these third-party sources to be reliable as of the date of this Presentation, it has not independently verified, and makes no representation as to the adequacy, fairness, accuracy or completeness of, any information obtained from third-party sources. The Company is the owner of various trademarks, trade names and service marks. Certain other trademarks, trade names and service marks appearing in this Presentation are the property of third parties. Solely for convenience, the trademarks and trade names in this Presentation are referred to without the ® and TM symbols, but such references should not be construed as any indicator that their respective owners will not assert, to the fullest extent under applicable law, their rights thereto.
Develop and launch the first curative targeted cellular therapies for patients with autoimmune diseases
Cabaletta overview

Developing highly specific CAAR T products to treat B cell-mediated autoimmune diseases
- Product design and manufacturing leverage Penn alliance and FDA-approved CAR T platform
- Pursuing diseases where there is a biologic opportunity for cure with the CABA platform

DSG3-CAART clinical program actively recruiting mucosal pemphigus vulgaris (mPV) patients
- Acute safety (8 day) data from initial cohort of the DesCAARTes™ trial expected by 1H21
- Multiple clinical sites engaged across the U.S. supported by validated manufacturing partnership with Penn
- Fast Track and Orphan Drug Designations granted

Preclinical pipeline led by MuSK-CAART for myasthenia gravis with IND filing anticipated in 2H21
- IND-enabling studies ongoing with in vivo preclinical data presented at American Academy of Neurology
- Manufacturing validation initiating with CMO partner in 2H20
- Three new discovery programs recently added through expanded SRA with Penn
- Gene editing collaboration established with Artisan Bio to develop potential next-generation CAAR T products

Issued U.S. patent on lead clinical program with emerging differentiated IP portfolio
- First issued CAAR T product patent covers all or any part of the relevant human antigens (DSG3 and DSG1)

Cash runway into at least 3Q22 with $123M in cash and investments at June 30, 2020
Our scientific platform leverages FDA-approved CAR T technology

CAAR T product candidates are designed for selective and specific elimination of the pathogenic B cells

Chimeric Antigen Receptor T cell

Kymriah

Chimeric AutoAntibody Receptor T cell

CABA CAAR T
CABA (Cabaletta Approach for Selective B cell Ablation) platform

Scientific, clinical and commercial assessment to inform product candidate development

Epitope mapping to determine regions targeted by autoantibodies

Optimize CAAR construct / design with the goal of selectively ablating reactive B cells

Preclinical in vitro and in vivo testing to evaluate efficacy and safety

Vector & Clinical Cell manufacturing

Clinical trials

MuSK-CAART

DSG3-CAART
Pipeline addressing disease targets where cure is possible

<table>
<thead>
<tr>
<th>Indication</th>
<th>Program</th>
<th>Discovery</th>
<th>Preclinical</th>
<th>Phase 1</th>
<th>Phase 2</th>
<th>Phase 3</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mucosal Pemphigus Vulgaris</td>
<td>DSG3-CAART</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Mucocutaneous Pemphigus Vulgaris</td>
<td>DSG3/1-CAART</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>MuSK Myasthenia Gravis</td>
<td>MuSK-CAART</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Hemophilia A w/ FVIII Alloantibodies</td>
<td>FVIII-CAART</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

1 Three additional undisclosed discovery programs added to our pipeline portfolio through Sponsored Research Agreement expansion with the University of Pennsylvania not shown.
2 In our discovery stage, we perform epitope mapping and optimize CAAR construct and design.
3 May not be required if Phase 2 is a registrational clinical trial.
DSG3-CAART for patients with mucosal pemphigus vulgaris
PV is an optimal lead indication for CAAR T therapy

DSG3 antibodies are widely considered to be necessary and sufficient to cause PV. Serum anti-DSG3 antibodies are 98-100% sensitive and specific.

Depletion of B cells by rituximab or antibody by plasmapheresis transiently improves clinical disease.

Incomplete B cell depletion by rituximab leads to PV recurrences, with identical disease-causing B cell clones.

The B cell repertoire and antigenic epitopes on DSG1/3 are well understood, and formed the basis for DSG3 and DSG1 CAAR designs.

The DSG3 CAAR has published animal model proof-of-concept validation.
Overview of Pemphigus Vulgaris

Current treatments require broad immunosuppression associated with safety risks and transient efficacy.

Current Treatment Landscape

Broad immunosuppression
- Modestly effective
- Poorly tolerated

B cell depletion with rituximab
- Transient remission ~ 70% CROT*
 - ~30% relapse in 1 year
 - >50% relapse within 2 years
- ~30% never achieve CROT
- 5.4% annual risk of severe infection
- Up to 1.9% lifetime risk of fatal infection

*CROT = complete remission off therapy

1. Image credit: D@nderm
DSG3-CAART encompasses all known pathogenic epitopes

2. Antibodies that target the specific extracellular domain are shown below each extracellular domain.
DSG3-CAART preclinical data

No evidence of toxicity at clinically relevant doses with selective and specific target engagement

<table>
<thead>
<tr>
<th>INDICATOR</th>
<th>RESULTS</th>
</tr>
</thead>
<tbody>
<tr>
<td>Tolerability</td>
<td></td>
</tr>
<tr>
<td>In vitro off-target toxicity</td>
<td>No specific cytotoxicity at clinically relevant cell numbers vs FcγR-expressing cells</td>
</tr>
<tr>
<td></td>
<td>No interactions confirmed with human membrane proteins</td>
</tr>
<tr>
<td>In vivo off-target toxicity</td>
<td>No off-target effects detected at clinically relevant doses</td>
</tr>
<tr>
<td>Target Engagement</td>
<td></td>
</tr>
<tr>
<td>Anti-DSG3 autoantibody titer</td>
<td>Serologic ‘remission’ - dose-dependent elimination of anti-DSG3 B cells and antibodies</td>
</tr>
<tr>
<td>CAAR T cell engraftment</td>
<td>Dose-dependent increase in CAAR-positive cells observed via flow cytometry</td>
</tr>
<tr>
<td>Tissue blistering</td>
<td>Histologic ‘remission’ - no blistering of oral mucosa</td>
</tr>
<tr>
<td>Anti-DSG3 hybridoma outgrowth</td>
<td>Significantly delayed outgrowth despite soluble anti-DSG antibodies</td>
</tr>
</tbody>
</table>
DesCAARTes™:
Phase 1 clinical trial in mucosal-dominant PV (mPV) patients

Open-label study to determine the maximum tolerated dose & fractionation of DSG3-CAART

Major Inclusion Criteria
- Age: ≥18
- Inadequately managed by standard immunosuppressive therapies
- Confirmed diagnosis
- Active disease
- Anti-DSG3 antibody positive

Major Exclusion Criteria
- Rituximab in last 6 months
- Prednisone > 0.25mg/kg/day
- Other autoimmune disorder requiring immunosuppressive therapies
- Recent investigational treatment
- ALC < 1,000 at screening

<table>
<thead>
<tr>
<th>Part</th>
<th>Cohort</th>
<th># Subjects</th>
</tr>
</thead>
<tbody>
<tr>
<td>A – Dose Escalation</td>
<td>A1-A4</td>
<td>3 (+3) per cohort</td>
</tr>
<tr>
<td>Fractionated infusion at increasing dose levels</td>
<td></td>
<td></td>
</tr>
<tr>
<td>B – Dose Consolidation</td>
<td>B1-B2</td>
<td>3 (+3) per cohort</td>
</tr>
<tr>
<td>Consolidating selected dose fractions into a single infusion</td>
<td></td>
<td></td>
</tr>
<tr>
<td>C – Expansion¹</td>
<td>C</td>
<td>~12</td>
</tr>
<tr>
<td>Expanded subject enrollment at final selected dose</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Total</td>
<td></td>
<td>~30 (+18)</td>
</tr>
</tbody>
</table>

Study Endpoint & Objectives

Primary Endpoint: Adverse Events, including Dose Limiting Toxicity

Secondary Objectives: DSG3 ELISA titer changes, rate of/time to/duration of remission, manufacturing success rate, CAAR T expansion/persistence

¹ FDA has requested, and the Company has agreed, that we will share data from part A to inform a discussion on the optimal design of part C. According to FDA guidance, the submission of part A data is not gating to planned enrollment in part B.
DesCAARTes™ clinical trial assessments and timeframes

Safety assessed acutely and at 3 months, with ability to measure CAAR T engagement by 6 months

2. To be potentially incorporated in future protocol amendments or trials after discussion with FDA.

Key Risks

<table>
<thead>
<tr>
<th>Risk Type</th>
<th>To reduce risk of occurrence</th>
<th>If risk encountered</th>
</tr>
</thead>
</table>
| CRS / Neurotoxicity | • Product designed to kill <1% of B cells
• Low initial dose with fractionation
• No lymphodepletion | • Manage with standard protocols |
| Soluble antibody | • Fractionated dosing designed to mitigate against potential toxicity | • Pretreat w/ plasmapheresis or IVIG
• Limit soluble anti-DSG3 antibody inclusion criteria |
| Insufficient efficacy / CAAR T engraftment | • Wide cell dose range planned | • Consider increased dose and/or preconditioning / lymphodepletion |
| Disease flare with medication taper | • Limit dose of corticosteroid use to enroll | • Local / oral steroids; plasmapheresis |
| Skin toxicity from cross-reactivity | • No preclinical signals | • Local / oral steroids; plasmapheresis |
| New autoimmune disorder or worsening | • Patients with active autoimmune disorders requiring immunosuppressants excluded | • Autoimmune therapies as needed |

Declining anti-DSG3 titers

Assuming selective B cell ablation in 2-4 weeks, serum IgG (half-life ~3 weeks) should fall within 6 months

Key efficacy measures

- DSG3 antibody titer (ELISA)
- Disease activity (clinical)
- Steroid / immunosuppressive use
Soluble antibodies may alter the dynamics of DSG3-CAART proliferation

Preclinical data suggests soluble antibodies can partially activate or inhibit DSG3 CAAR T cells

Inhibitory antibodies may reduce, but do not prevent, DSG3-CAART target engagement

![Graph showing specific lysis vs. soluble IgG concentration](image)

- Increased target engagement
- Decreased target engagement

EC1-4 vs. PV Ab #1
EC1-4 vs. PV Ab #2
NTD vs. PV Ab #1
NTD vs. PV Ab #2

Soluble anti-DSG3 induces CAAR T cell proliferation

![Graph showing T cell division](image)

- Increased T cell division compared to response to normal human IgG

Cell division

2. Antibodies derived from a hybridoma model.
3. Non-transduced T cell.
4. CFSE (carboxyfluorescein diacetate succinimidyl ester) is a dye used in flow cytometric monitoring that reduces in intensity as it is distributed in actively dividing cells. Non-dividing cells will retain more CFSE dye.
Active Immune Model: Target engagement despite soluble antibody

DSG3-CAART demonstrates target engagement in presence of physiologic DSG3 antibody titer

1. The DSG3 protein is made of up of 5 extracellular (EC) domains, EC1-5. Antibodies against EC1-4 can be pathogenic, but antibodies against EC5 are not. Therefore, antibodies against EC5 are not targeted by the CAAR by design.

2. In this model, the human DSG3-CAART product is rapidly rejected. In these two animals, an incomplete response against EC1 was observed, which correlated with loss of persistence.
Preconditioning regimens in CAAR T cell therapy may not be required

Past successes in HIV and multiple myeloma without preconditioning plus differences in patient populations are relevant\(^1,2\)

- Data suggest preconditioning may not be necessary to drive responses beyond leukemia / lymphoma

- Potential activating effect of soluble antibody on engraftment and function is a key consideration in autoimmune patients

- Multiple infusions, higher dose, and cytokine use may offer more tolerable approach for autoimmune patients

<table>
<thead>
<tr>
<th>Lymphodepletion Mechanism</th>
<th>Oncology</th>
<th>Autoimmunity</th>
</tr>
</thead>
<tbody>
<tr>
<td>Reduction of T cell growth cytokine sinks(^3)</td>
<td>+</td>
<td>+</td>
</tr>
<tr>
<td>Depletion of suppressor cells(^4)</td>
<td>+</td>
<td>-</td>
</tr>
</tbody>
</table>

\(^{+}\) Lymphodepletion mechanism likely to apply

\(^{-}\) Lymphodepletion mechanism unlikely to apply

DSG3/1 CAART for mucocutaneous PV (mcPV)

Plan to potentially submit an IND after review of safety and target engagement data from DSG3-CAART

DSG3/1 CAARs designed for mcPV

- DSG3 and DSG1 autoantibodies
- Most severe and common form of PV (~75%)
- Mucosal blistering, plus skin erosion and blistering
- Managed with immune suppression, similar to mPV
 - High risk of relapse
 - Potential for hospitalizations and fatal infections

% of PV sera targeting each domain

<table>
<thead>
<tr>
<th>Domain</th>
<th>EC1</th>
<th>EC2</th>
<th>EC3</th>
<th>EC4</th>
<th>EC5</th>
</tr>
</thead>
<tbody>
<tr>
<td>DSG1</td>
<td>98%</td>
<td>26%</td>
<td>9%</td>
<td>4%</td>
<td>7%</td>
</tr>
</tbody>
</table>

Transmembrane Domain

Cytoplasmic tail

DSG1-CAART and DSG3-CAART both demonstrated specific cytotoxicity in vitro

- Together, DSG1-CAART and DSG3-CAART demonstrated cytotoxicity towards anti-DSG3 and anti-DSG1 B cells

MuSK-CAART for patients with MuSK myasthenia gravis
High unmet need in MuSK myasthenia gravis; a valuable CAAR target

All known extracellular domains can be included in the CAAR design

Similarities to pemphigus support clinical potential of CAAR T in MuSK MG

1. Autoantibody titers drop after rituximab\(^1,2\)
2. Pathogenic B cells are incompletely eliminated by rituximab and persist during relapse\(^3\)

MuSK has similar modular structure and size as DSG3

Seronegative MG
- Low affinity AChR, LRP4
- 9%

AChR MG Early Onset
- Age <50; F>M
- 65%

AChR MG Late Onset
- Age >50; M>F
- 20%

Prevalence: ~65,000 patients in the US

Typically more severe
- Limited treatment options
- Early onset – 7:1 females

MuSK-CAART in vitro selective & specific target engagement

MuSK-CAART showed similar potency against target cells that bind to different epitopes

MuSK-CAART demonstrated specific *in vivo* target engagement¹

MuSK-CAART eliminated anti-MuSK target cells² in an animal model where CART19 cells were a positive control.

2. Target cells represent a B cell tumor line (CD19 positive) that has been modified to express the anti-MuSK antibody.
Manufacturing
Manufacturing strategy
Three-stage approach allows for efficient allocation of capital while leveraging experienced partners

<table>
<thead>
<tr>
<th>Stage 1: Penn DSG3-CAART Phase 1¹</th>
</tr>
</thead>
<tbody>
<tr>
<td>2019 –</td>
</tr>
<tr>
<td>• Cell processing capacity secured through Penn partnership</td>
</tr>
<tr>
<td>• SOPs previously used to develop an FDA approved product</td>
</tr>
<tr>
<td>• Clinical vector validated</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Stage 2: CDMOs & CABA Process MuSK-CAART Phase 1</th>
</tr>
</thead>
<tbody>
<tr>
<td>2021 –</td>
</tr>
<tr>
<td>• CDMOs for vector and cell processing with commercial support capabilities</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Stage 3: Cabaletta Facility Commercialization & Scale-Up</th>
</tr>
</thead>
<tbody>
<tr>
<td>Data-gated investment</td>
</tr>
<tr>
<td>• Build out Cabaletta-owned manufacturing facility</td>
</tr>
</tbody>
</table>

¹ Penn-sponsored CD19 CAR IND CMC data has been cross-referenced in DSG3-CAART IND to provide additional data reflecting alignment.
Parallel steps in manufacturing process\(^1\) for CAR T vs CAAR T

Vector production and cell processing are key risks mitigated by strategy, partnership, process and people

Conserving the clinically validated CART19 cell manufacturing process mitigates risks

- Cross referenced Penn CART19 IND including CMC process\(^1\)
- Penn process, not Novartis process, avoiding Kymriah release challenges\(^2\)
- Engineering runs have demonstrated efficient manufacture of DSG3-CAART cells from PV patients\(^3\)

Multiple runs contractually secured each month at Penn

- Subject to future COVID-19 impact

DSG3 vector supply secured for next 2-3 years

1. Penn-sponsored CD19 CAR IND CMC data has been cross-referenced in DSG3-CAART IND to provide additional data.
3. T cells isolated from patients with a range of treatment regimens of low to high intensity were tested; the highest intensity regimen and patients with ALC<1000 cells/uL expanded less well and will be excluded from the trial design.
Corporate Summary
Recent highlights and anticipated upcoming milestones

- **DSG3-CAART**
 - IND cleared within routine 30-day window
 - Fast Track and Orphan Drug Designation
 - Multiple sites across the U.S. engaged
 - *In vivo* target engagement data presented at AAN

- **MuSK-CAART**
 - Validate MuSK-CAART manufacturing process with CMO partner
 - Acute safety data from first cohort by 1H21
 - IND filing 2H21
 - IND enabling studies initiated

Cabaletta Bio